MAGNETICS

1 Sisällys

1	Mag	gnetic and electric circuit analogy3					
	1.1	Energy of the magnetic field					
	1.2	Energy stored in an inductance5					
	1.3	EMF equation	EMF equation				
2	Mea	Measuring magnetic core properties					
2.1 Relative permeability							
	2.1.2	1 Method 1	8				
	2.1.2	2 Method 2	9				
	2.2	Measuring magnetic core hysteresis loop	11				
	2.2.2	1 Example 1:	14				
3	Swit	ch mode power supply design example	17				
	3.1	Basic topology of single ended flyback converter					
	3.2	Select core cross section	18				
	3.3	Select maximum on-time	18				
	3.4	Define minimum input voltage	18				
	3.5	Select working flux density swing	18				
	3.6	Calculate minimum primary turns	18				
	3.7	Calculate secondary turns	18				
	3.8	Calculate primary inductance and core air gap size	19				
	3.9	Final specification of the core	20				
	3.10	Calculate flux density swing AC component	21				
	3.11	Calculate contribution of the flux DC component					
	3.12	Check B_{max} against core material flux density characteristics at 100 °C	22				

Figure 1: Relative permeability measurement principle method 1- Closed magnetic circuit	9
Figure 2:Relative permeability measurement principle method 2	10
Figure 3:Measurement principle	12
Figure 4:Equivalent circuit of device under test	13
Figure 5:Vector diagram of hysteresis loop measurement (Ic and Ir are drawn exaggerated)	14
Figure 6:DUT of example 1	15
Figure 7:Schematic and test arrangement	15
Figure 8:Hysteresis curve of DUT of example 1	16

1 Magnetic and electric circuit analogy

Figure 1:Magnetic circuit

$$\begin{split} &I= \text{current in winding (A)} \\ &F_m = \text{Magnetomotive force (A)} \\ &N=\text{Number of turns (unitless)} \\ &L=\text{Inductance of winding (H)} \\ &\mu_0 = \text{Permeability of vacuum, } 4\pi*10^{-7} \text{ (H/m)} \\ &\mu_r = \text{Relative permeability of material (unitless)} \\ &R_{mc} = \text{Reluctance of the magnetic circuit in core (A/Vs=1/H)} \\ &R_{mg} = \text{Reluctance of the magnetic circuit in air gap (A/Vs=1/H)} \\ &Ic = \text{Length of magnetic circuit in core (m)} \\ &Ig = \text{Length of magnetic circuit in air gap (m)} \\ &A_c = \text{Cross section of magnetic core (m^2)} \\ &A_g = \text{Cross section of air gap (m^2)} \\ &V_c = \text{Core volume (m^3)} \\ &V_g = \text{Air gap volume (m^3)} \end{split}$$

 $B_c = Flux$ density in core (T)

$$\begin{split} B_g &= Flux \text{ density in air gap (T)} \\ H_c &= Magnetic \text{ field strength in core (A/m)} \\ H_g &= Magnetic \text{ field strength in air gap (A/m)} \\ E &= Energy (J) \end{split}$$

$$R_{mc} = \frac{l_c}{\mu_0 \mu_r A_c}$$

$$R_{mg} = \frac{l_g}{\mu_0 A_g}$$

$$\Phi = \frac{F_m}{R_m} = \frac{NI}{\frac{l_c}{\mu_0 \mu_r A_c} + \frac{l_g}{\mu_0 A_g}}$$

$$L = \frac{N^2}{R_m}$$

$$B_c = \frac{\Phi}{A_c}$$

$$B_g = \frac{\Phi}{A_g}$$

$$H_c = \frac{B_c}{\mu_0 \mu_r}$$

$$H_g = \frac{B_g}{\mu_0}$$

1.1 Energy of the magnetic field

$$E = \frac{1}{2} \oiint BHdV = \frac{1}{2} \oiint \frac{B^2}{\mu} dV$$

Energy density

$$E_d = \frac{B^2}{2\mu} \left[\frac{J}{m^3}\right]$$

Energy density in core:

$$E_{dc} = \frac{B_c}{2\mu_0\mu_r}$$

Energy density in air gap:

$$E_{dg} = \frac{B_g}{2\mu_0}$$

Energy stored in core:

$$E_c = E_{dc} V_c = \frac{B_c}{2\mu_0\mu_r} A_c l_c$$

Energy stored in air gap:

$$E_g = E_{dg} V_g = \frac{B_g}{2\mu_0} A_g l_g$$

If Ag can be assumed to be equal to Ac (field at gap does not "spread out")

$$\frac{E_g}{E_c} = \frac{\frac{B_{\overline{g}}}{2\mu_0} A_{\overline{g}}}{\frac{B_{\overline{e}}}{2\mu_0\mu_r} A_{\overline{e}}} = \mu_r \frac{l_g}{l_c} \gg 1$$

Because μ_r is large for ferromagnetic materials (thousands), most of the energy is stored in the air gap. Also, magnetic field is stronger by μ_r in the air gap (assumed flux density is constant, $B_c=B_g$):

$$\frac{H_g}{H_c} = \frac{\frac{\overline{B_g}}{\overline{\mu_g}}}{\frac{\overline{B_e}}{\overline{\mu_g}}\mu_r} = \mu_r$$

1.2 Energy stored in an inductance

p = Power supplied by the source

 p_L = Power of inductor L

 $p_r = Power of resistor R$

u_L= Voltage across inductor L

 $I_s = Stationary state current$

Switch closes at t=0.

Power p supplied by the source:

$$p(t) = u(t)i(t) = p_L + p_R = u_L * i + i^2 R$$
$$u_L = L \frac{di}{dt}$$
$$p(t) = L \frac{di}{dt}i + i^2 R$$

Because

$$p = \frac{dE}{dt}$$
$$\frac{dE}{dt} = \frac{Li * di + i^2 R dt}{dt} \to dE = Li \, di + i^2 R dt$$
$$\int_0^E dE = \int_0^{Is} Li \, di + \int_0^t R \, i^2 dt$$

The first integral represents the energy stored in the inductance

$$E = \frac{1}{2}L | i^{2}$$

$$E = \frac{1}{2}LI_{s}^{2}$$

$$E = \frac{1}{2} * 2Vs/A \left(\frac{10V}{100V/A}\right)^2 = 0.01Ws$$

1.3 EMF equation

Assume

$$u(t) = -e(t) = \hat{u}\sin(\omega t),$$
$$e(t) = -N\frac{d\Phi}{dt} \to u = N\frac{d(\hat{\varphi}\sin(\omega t))}{dt} = N\omega\hat{\varphi}\cos(\omega t)$$

Maximum instant value of u is when $\cos(\omega t) = 1$, i.e. $\omega t=0$;

$$\hat{u} = N\omega\hat{\varphi} = 2\pi f N\hat{\varphi}$$

Because u(t) is $\hat{u} \sin(\omega t)$, RMS- value of u is $U = \frac{\hat{u}}{\sqrt{2}}$

$$U = \frac{2\pi}{\sqrt{2}} f N \hat{\varphi} \approx 4,44 f N \hat{\varphi}$$

2 Measuring magnetic core properties

2.1 Relative permeability

Permeability of ferrous materials is not a constant. It depends on the magnetic field strength and temperature.

Definitions

a) initial permeability

The initial permeability μ_i defines the relative permeability at very low excitation levels and constitutes the most important means of comparison for soft magnetic materials. According to IEC 60401-3, μ_i is defined using closed magnetic circuits (e.g. a closed ring-shaped cylindrical coil) for f ≤ 10 kHz, B< 0.25mT,T=25 °C

$$\mu_i = \frac{1}{\mu_0} \frac{\Delta B}{\Delta H}_{(\Delta H \to 0)}$$

2.1.1 Method 1

 A_c = Area of cross section of the magnetic circuit (m²) R_m = Reluctance of the magnetic path (A/Vs) l_m = length of magnetic circuit (m) μ_0 = permeability of vacuum, 4π *10⁻⁷ H/m μ_r = relative permeability of material (unitless)

Figure 2: Relative permeability measurement principle method 1- Closed magnetic circuit

- Measure l_m and A_c (in m and m^2)- easiest in case of a toroid core
- Calculate "air core inductance" L₀ (H)

$$R_m = \frac{l_m}{\mu_0 \mu_r A_c}$$

$$L_0 = \frac{N^2}{R_{m0}} = \frac{N^2 \mu_0 A_c}{l_m}$$

- Measure (e.g. with an LCR-meter) the inductance of winding with N turns $N^2 + 4$

$$L_s = \frac{N^2 \mu_0 \mu_r A_c}{l_m}$$

- Divide L_s by L_0 to get μ_r of the material in question

$$\frac{L_s}{L_0} = \frac{\frac{N^2 \mu_0 \mu_r A_c}{l_m}}{\frac{N^2 \mu_0 A_c}{l_m}} = \mu_r$$

2.1.2 Method 2

Figure 3:Relative permeability measurement principle method 2

$$\begin{cases} R_m = \frac{l_m}{\mu A_c} \rightarrow \mu = \frac{l_m \Phi}{N I_L A_c} = \frac{l_m U}{N I_L A_c N \omega} = \frac{l_m U}{I_L A_c N^2 \omega} \\ R_m = \frac{N I_L}{\Phi} \\ u(t) = -N \frac{d\Phi}{dt} \end{cases}$$

$$\frac{d\Phi}{dt} = \frac{u(t)}{-N} \rightarrow$$

$$\Phi_{ave} = \frac{1}{\pi/2} \int_0^{\pi/2} \frac{u(t)}{-N} dt = -\frac{2\hat{u}}{\pi N} \int_0^{\pi/2} \sin(\omega t) dt = -\frac{2\hat{u}}{\pi N\omega} \frac{\pi/2}{0} - \cos(\omega t) = \frac{2\hat{u}}{\pi N\omega}$$

Because flux is sinusoidal

$$\Phi_{ave} = \frac{2\sqrt{2} * \Phi}{\pi}$$
$$\Phi = \frac{2\hat{u}}{\pi N\omega} * \frac{\pi}{2\sqrt{2}} = \frac{\hat{u}}{\sqrt{2}N\omega} = \frac{U}{N\omega}$$

Relative permeability can be calculated

$$\mu_r = \frac{\mu}{\mu_0}$$

U is the RMS voltage of u2 in oscilloscope channel 2 (voltage over coil).

IL= (U1- U)/R

Note that voltage shall be kept low enough to avoid core saturation.

2.1.2.1 Example using methods 1 and 2

Ferrite core of Figure 7:DUT of example 1 A_c = 7,33mm x 3,33mm =2,42x10⁻⁵ m² I_m = 0,032 m N=15 Method 1:

$$L_0 = \frac{N^2 \mu_0 A_c}{l_m} = \frac{15^2 * 4\pi * \frac{10^{-7} H}{m} * 2,42 * 10^{-5} m^2}{0,032 m} = 213,7 nH$$

Measured with an LCR meter at 1 kHz:

$$\begin{split} L_s &= \frac{N^2 \mu_0 \mu_r A_c}{l_m} = 2,15 \; mH \\ & \frac{L_s}{L_0} = \mu_r = \frac{2,15 \; mH}{213,7 \; nH} = 10060 \approx 10000 \end{split}$$

Method 2: R=18 Ω U =U₂= 0,101V I_L=(U₁-U₂)/R=0,125V/18 Ω =6,94 mA

$$\mu = \frac{l_m U}{I_L A_c N^2 \omega} = \frac{0,032 \ m * 0,101V}{6,94 * 10^{-3} A * 2,42 * 10^{-5} m^2 * 15^2 * 2\pi * 1 * 10^3 \frac{1}{s}} = 0,0135 \ H/m$$

$$\mu_r = \frac{\mu}{\mu_0} = \frac{0.0136 \, H/m}{4\pi * 10^{-7} H/m} = 10843 \approx 11000$$

The result's absolute value is very sensitive on the estimation of dimensions I_m and A_c . Both methods are limited to cases where magnetic circuit is well defined and does not include an air gap.

2.2 Measuring magnetic core hysteresis loop

Area within the hysteresis loop is proportional to the losses in the core.

Figure 4:Measurement principle

For an inductor:

$$E = -N\frac{d\varphi}{dt} = \frac{-NAdB}{dt} \to B(t) = \int_0^t \frac{E(t)}{-NA_c} dt$$
$$\Phi = BA_c$$

$$\begin{split} & \mathsf{E} = \mathsf{u}(\mathsf{t}) = \mathsf{U}_\mathsf{p} \sin(\omega \mathsf{t}) = \mathsf{Voltage} \ \mathsf{across} \ \mathsf{inductor} \ (\mathsf{V}) \\ & \mathsf{N} = \mathsf{number} \ \mathsf{of} \ \mathsf{turns} \\ & \mathsf{A}_\mathsf{c} = \mathsf{Area} \ \mathsf{of} \ \mathsf{cross} \ \mathsf{section} \ \mathsf{of} \ \mathsf{the} \ \mathsf{magnetic} \ \mathsf{circuit} \ (\mathsf{m}^2) \\ & \Phi = \mathsf{Magnetic} \ \mathsf{flux} \ (\mathsf{Wb}) \\ & \mathsf{B} = \mathsf{Flux} \ \mathsf{density} \ (\mathsf{T}) \\ & \mathsf{H} = \mathsf{Magnetic} \ \mathsf{field} \ \mathsf{strength} \ (\mathsf{A}/\mathsf{m}) \\ & \mathsf{I}_\mathsf{m} = \mathsf{length} \ \mathsf{of} \ \mathsf{magnetic} \ \mathsf{circuit} \ (\mathsf{m}) \end{split}$$

Figure 5:Equivalent circuit of device under test

R1 = Primary winding resistance

Xo1 = Primary winding inductive stray reactance

Rr= Core iron loss resistance

Xm=Main magnetizing reactance

R2= Auxiliary resistor (R2 >>1/ ω C2)

R= Auxiliary resistor (small resistance)

C2= Auxiliary capacitor, forms an integrator together with R2

Measuring hysteresis curve:

Voltage at oscilloscope horizontal plates (X) is proportional to the strength of the magnetic field H, because

$$u_x = IR$$
$$H = \frac{N_1 I}{l_m}$$

so

$$u_x = \frac{R \ l_m}{N_1} \ H = k_1 H$$

Voltage at oscilloscope vertical plates (Y) is proportional to magnetic flux density B, because if

$$R_2 \gg \frac{1}{\omega C_2}$$

And because $I_{\rm r}$ and $I_{\rm c}$ are small,

$$I \approx I_m$$

So

$$i_c \approx \frac{e_1}{R_2}$$
$$u_{C2} = u_y = i_c \frac{1}{\omega C_2} \approx \frac{e_1}{\omega R_2 C_2} \approx \frac{u_1}{\omega R_2 C_2}$$
$$u_1 \approx e_1 = N_2 \frac{d\varphi}{dt} = N_2 \frac{d[\widehat{\varphi}\sin(\omega t)]}{dt} = N_2 \widehat{\varphi} \operatorname{\omega}\cos(\omega t) = \omega N_2 \varphi = \omega N_2 B A_c$$

And

$$u_{\mathcal{Y}} = \frac{\omega N_2 B A_c}{\omega R_2 C_2} = \frac{N_2 A_c}{R_2 C_2} B = k_2 B$$

 k_1 = scale factor for H k_2 = scale factor for B

Figure 6:Vector diagram of hysteresis loop measurement (Ic and Ir are drawn exaggerated)

2.2.1 Example 1: Toroid ferrite core, no air gap

Figure 7:DUT of example 1

Define the needed minimum number of turns $N_{\mbox{\scriptsize min}}$ to achieve desired flux density B:

$$N_{min} = \frac{l_m B}{I \mu}$$

 $\mu = \mu_0 \ \mu_r = \text{permeability of material (H/m)}$ I = Current of winding (A) (depends on the voltage source u(t) available) $u(t) = U_p \sin(\omega t)$ $N_1 = 15, \ N_2 = 15$ $A_c = 7,33 \text{ mm x } 3,33 \text{ mm } = 2,42 \times 10^{-5} \text{ m}^2$ $I_m = 0,032 \text{ m}$

Figure 8:Schematic and test arrangement

Figure 9:Hysteresis curve of DUT of example 1

X:1V/div Y: 100mV/div R=18Ω R₂= 100kΩ C₂=3,6 nF

$$k_{1} = \frac{R l_{m}}{N_{1}} = \frac{18V/A * 0,032 \text{ m}}{15} = 0,0384 Vm/A$$
$$H = \frac{u_{x}}{k_{1}} = \frac{2,2V}{0,0384 Vm/A} \approx 57,3 A/m$$
$$k_{2} = \frac{N_{2}A_{c}}{R_{2}C_{2}} = \frac{15 * 2,42 * 10^{-5} m^{2}}{\frac{100 * 10^{3}V}{A} * 3,6 * 10^{-9} As/V} = 1,008m^{2}/s$$
$$B = \frac{u_{y}}{k_{2}} = \frac{250 * 10^{-3}V}{1,008 m^{2}/s} \approx 0,248T$$

3 Switch mode power supply design example

Following calculation principle is based on "Switchmode Power Supply Handbook" by Keith Billings

Design a boost flyback converter with following general properties:

Supply voltage: 9V DC Output voltage: 12V DC Output current: 0,35A Controller: LM2577

3.1 Basic topology of single ended flyback converter

I_p = Flyback transformer primary current

V_{in}= Supply voltage

V_p = Flyback transformer primary voltage

 N_p , N_s = Number of turns in flyback transformer primary and secondary

 L_p , L_s = Inductance of flyback transformer's primary and secondary

- $I_{\text{o}}\text{=}$ Flyback transformer secondary current
- V_{out} = Output voltage

V_{DS}=Mosfet switch drain to source voltage

V_{dr}= Rectifier diode reverse voltage

V_{df}= Rectifier Diode forward voltage drop

T= Switch frequency period

A_e=Cross sectional area of transformer core

Initial design parameters

Parameter		Value	Unit
Input voltage	Vin	7,5-9	V _{DC}
Output power	Pout	4,2	W
Output voltage	Vout	12	V
Efficiency	η	85	%
Rectifier Diode forward	V_{df}	0,7	V
voltage drop			
Switching frequency	f	52	kHz

3.2 Select core cross section

Initially only the cross section of the core will be needed for calculation of primary minimum turns. Select A_e =64 mm². Core material property dependent A_L and required air gap I_g will be determined later.

3.3 Select maximum on-time

$$T = \frac{1}{f} = \frac{1}{52 * 10^3 Hz} = 19,2\mu s$$

Maximum on-time will occur at minimum input voltage and maximum load. Here it is assumed that maximum on-time can not exceed 50% of the total period.

$$T_{ON(max)} = \frac{19,2}{2} \mu s \approx 9,6 \mu s$$

To allow some margin for control to operate well at minimum input voltage, let's select

$$T_{ON(max)} = 9,0\mu s$$

3.4 Define minimum input voltage

Vin(min)=7,5V

3.5 Select working flux density swing

ΔB_{ac}=200 mT (Peak-to-Peak value)

3.6 Calculate minimum primary turns

$$Np_{min} = \frac{V_{in(min)}T_{ON(max)}}{\Delta B_{ac}A_{e}} = \frac{7,54 \times 9,6 \times 10^{-6} \text{s}}{200 \times 10^{-3} \frac{V \text{s}}{m^{2}} \times 64 \times 10^{-6} \text{m}^{2}} = 5,6 \approx 6$$

3.7 Calculate secondary turns

Calculate volts per turn in primary

$$\frac{V_p}{turn} = \frac{7,5V}{6} = 1,25V/turn$$

Secondary turns rounded up to nearest integer

$$N_s = \frac{V_{out} + V_{df}}{V/turn} = \frac{12V + 0.7V}{1.25 V} = 10.2 \approx 11$$

Volts per turn in the secondary would actually be

$$\frac{V_s}{turn} = \frac{12V + 0.7V}{11} = 1.15V/turn$$

Due to secondary turns roundoff, Ton and Toff must be adjusted to maintain volt-second equality:

$$\frac{V_p T_{on}}{N_p} = \frac{V_s T_{off}}{N_s} \to T_{on} = \frac{N_p V_s T}{N_s V_p + N_p V_s} = \frac{6 * 12,7V * 19,2\mu s}{11 * 7,5V + 6 * 12,7V} = 9,2\mu s$$

3.8 Calculate primary inductance and core air gap size

 I_a = Average current during period T I_m = Mean current during T_{on}

Incomplete energy transfer mode with optimum primary inductance

If by choice

$$i_{p3} = 3i_{p1} \rightarrow i_m = 2i_{p1}$$

Average current Ia during the whole period T can be calculated

$$I_a = \frac{P_{out}}{\eta \, V_{in}} = \frac{4,2W}{0,85 * 7,5V} = 0,66A$$

Therefore, mean current during time Ton is

$$I_m = \frac{I_a T}{T_{on}} = \frac{0,66A * 19,2\mu s}{9,2\mu s} = 1,38A$$

Change of current I_p during the on-period is $2i_{p1}=I_m$. Inductance of the primary can now be calculated:

$$L_p = \frac{V_{in}\Delta t}{\Delta i} = \frac{7,5V * 9,2\mu s}{1,38A} = 50\mu H$$

Assuming that all reluctance R_m is in the air gap I_g and the field will not spread out significantly in the air gap i.e. $A_e = A_g$:

$$R_m = \frac{l_c}{\mu_0 \mu_r A_e} + \frac{l_g}{\mu_0 A_g} \approx \frac{l_g}{\mu_0 A_e}$$

and

$$L_{p} = \frac{N_{p}^{2}}{R_{m}} = \frac{N_{p}^{2}}{\frac{l_{g}}{\mu_{0}A_{e}}} \to l_{g} = \frac{\mu_{0}N_{p}^{2}A_{e}}{L_{p}}$$

air gap lg

$$l_g = \frac{\mu_0 N_p^2 A_e}{L_p} \left[\frac{\frac{Vs}{Am} m^2}{\frac{Vs}{A}} = m \right] = \frac{4\pi * 10^{-7} * 6^2 * 64 * 10^{-6}}{50 * 10^{-6}} m = 0,058mm$$

 $\mu_0=4\pi^*10^{-7} \text{ H/m}$

3.9 Final specification of the core

Typically, the AL value, also known as AL factor, inductance factor, inductance coefficient, inductance per turn or inductance per square turn is given in the core's datasheet for gapped and non-gapped cores. An air gap closest to calculated in previous phase is selected.

$$A_L = \frac{L_p}{N_p^2}$$

RM8		·		
Material	AL/nH/N ²	Air gap/mm	Np(min)	Lp/µH
N48	630	0,10	6	22,6
N48	400	0,14	6	14,4
N48	315	0,17	6->13	11,3->53,2

As in this example, if the core material N48 was gapped 0,17mm, it turns out that the number of primary turns must be increased from 6 to 13 to achieve the required minimum primary inductance. Recalculation according to 3.7 and 3.8 must be in that case performed.

Alternatively, material with higher AL with a suitable air gap providing at least the minimum inductance required for the primary could be selected and keeping the primary turns as they were.

RM 8 Core					B65811	
 To IEC 62317-4 Cores without center hole for transformer applications Delivery mode: sets Magnetic characteristics (per set)						
	with center hole	without center hole			9.8 min. 23.2-0.9	
ΣI/A I _e A _e A _{min} V _e	0.68 35.1 52 1825	0.59 38 64 55 2430	mm ⁻¹ mm mm ² mm ² mm ³		017+0.6	
Approx. weight (per set)				14.3±0.25 2.9±0.15		
m Gapped	10.7	12	g		M2 ø4.4+0.2 ø8.55 ⁻ 0.3 FRM0352-W	
Material A _L value s approx.		x.	μ _e	Ordering code ¹⁾ -D with center hole -F with threaded sleeve -J without center hole		
N48	$\begin{array}{c} 250 \pm \ 3\% \\ 315 \pm \ 3\% \\ 400 \pm \ 3\% \\ 630 \pm \ 5\% \end{array}$	0.23 0.17 0.14 0.10		134 169 215 338	B65811+0250A048 B65811+0315A048 B65811+0400A048 B65811+0630J048	
N41	$\begin{array}{c} 160 \pm \ 3\% \\ 250 \pm \ 5\% \\ 630 \pm \ 5\% \\ 1600 \pm 10\% \end{array}$	0.49 0.24 0.11 0.04		76 118 298 756	B65811J0160A041 B65811J0250J041 B65811J0630J041 B65811J1600K041	
N87 250 ± 3% 400 ± 3% 0.30 0.18			118 189	B65811J0250A087 B65811J0400A087		

3.10 Calculate flux density swing AC component

$$B_{ac(p-p)} = \frac{V_{in(\min)} * T}{N_p * A_e} = \frac{7.5V * 19.2 * 10^{-6}s}{13 * 64 * 10^{-6}m^2} = 173mT$$

3.11 Calculate contribution of the flux DC component

Using an equation for solenoid magnetic field in the air gap with average primary DC current $I_{\mbox{\scriptsize a}}$

$$B_{DC} = \frac{\mu_0 N_p I_a}{l_g} = \frac{4\pi * 10^{-7} \frac{Vs}{Am} * 13 * 0.66A}{0.17 * 10^{-3}m} = 63 mT$$

 $B_{max} = B_{ac} + B_{DC} = 173mT + 63mT = 237mT$

3.12 Check B_{max} against core material flux density characteristics at 100 °C to leave sufficient margin for saturation.

SIFERRIT materials					
N48					
Material properties					
Preferred application			Resonant circuit inductors		
Material			N48		
Base material			MnZn		
Color code (adjuster)			_		
	Symbol	Unit			
Initial permeability (T = 25 °C)	μ		2300 ±25%		
Meas. field strength Flux density (near saturation) (f = 10 kHz)	H B _S (25 °C) B _S (100 °C)	A/m mT mT	1200 420 310		
Coercive field strength (f = 10 kHz)	H _c (25 °C) H _c (100 °C)	A/m A/m	26 19		
Optimum frequency range	f _{min} f _{max}	MHz MHz	0.01 0.1		
$\begin{array}{ccc} \mbox{Relative} & \mbox{at } f_{min} & \mbox{tan } \delta/\mu_i & 10^{-6} \\ \mbox{loss factor} & \mbox{at } f_{max} & 10^{-6} \end{array}$			<4 <6		
Hysteresis material constant	η _B	10-6/mT	<0.4		
Curie temperature	T _C	°C	>170		
Relative temperature coefficient at 25 55 °C at 5 25 °C	α _F	10- ⁶ /K	0.3 1.3 0.3 1.3		
Mean value of α _F at 25 55 °C		10 ⁻⁶ /K	0.70		
Density (typical values)		kg/m ³	4700		
Disaccommodation factor at 25 °C	DF	10 ⁻⁶	2		
Resistivity	ρ	Ωm	3		
Core shapes			RM, P		